Copy a = np . zeros ( 3 )
# [0. 0. 0] ndarray with floats
a . shape
# (3,)
a . shape = ( 3 , 1 )
# [[0.
# 0.
# 0.]]
a = np . ones ( 5 )
# [1. 1. 1. 1. 1.]
a = np . empty ( 3 )
# [0. 0. 0]
a = np . linspace ( 2 , 10 , 5 ) # from 2 to 10, with 5 elements
# [2. 4. 6. 8. 10.]
a = np . array ([ 1 , 2 , 3 ])
# [1, 2, 3] ndarray
a_list = [[ 10 , 20 , 30 ] , [ 40 , 50 ]]
a = np . array (a_list)
# [[10, 20, 30], [40, 50]] ndarray
np . random . seed ( 0 )
a = np . random . randint ( 10 , size = 5 )
# [5 0 3 3 7]
a [ 0 : 2 ]
# [5, 0]
a [ - 1 ]
# 7
Copy np . sum (arr) # sum
np . prod (arr) # product
np . mean (arr) # mean
np . std (arr) # standard deviation
np . var (arr) # variance
np . min (arr) # minimum
np . max (arr) # maximum
np . argmin (arr) # indices of min
np . argmax (arr) # indices of max
Copy a = np . array ([ 1 , 2 , 3 , 4 , 5 ])
a < 3
# [True, True, False, False, False]
a > 3
# [False, False, False, True, True]
a [ a < 3 ]
# [1, 2]
Copy a = np . array ([ 1 , 2 , 3 , 4 , 5 ])
b = np . array ([ 6 , 7 , 8 , 9 , 10 ])
a + b
# [7, 9, 11, 13, 15]
a + 30
# [31, 32, 33, 34, 35]
a * b
# [6, 14, 24, 36, 50]
a @ b # dot product
# 130
a = np . array ([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ]])
a . T # transpose
# [[1, 4],
# [2, 5],
# [3, 6]]
a = np . array ([ 1 , 4 , 2 , 6 , 0 ])
np . sort (a)
# [0, 1, 2, 4, 6]