Structuring Machine Learning Projects
在 Structuring Machine Learning Projects 中
將傳授一些在別的地方不會說的 experiences
這些都是來自吳恩達的 "industry experience"
知道如何 diagnose errors in maching learning system
能夠優先找到正確的 implement directions 並且減少錯誤
了解複雜的 ML settings
mismatched training / test sets
comparing to and/or surpassing humal-level performance
學會 End-to-end learning, transfer learning, multi-task learning
他見過太多 teams 浪費數月、數年在進行專案,只因為沒搞懂以上這些事情
所以這堂課可以 save 你非常多時間
這將是 Deep learning 的第三堂課 !
ML Strategy (1)
Orthogonalization
Single number evaluation metric
Train/dev/test distributions
human-level performance
Avoidable bias
model performance
ML Strategy (2)
error analysis
clean up incorrect labeled data
Build your first system quickly, then iterate
Training and testing on different distributions
Bias and Variance with mismatched data distributions
Addressing data mismatch
Transfer learning
Multi-task learning
End-to-end deep learning
Last updated