Academic
  • Introduction
  • Artificial Intelligence
    • Introduction
    • AI Concepts, Terminology, and Application Areas
    • AI: Issues, Concerns and Ethical Considerations
  • Biology
    • Scientific Method
    • Chemistry of Life
    • Water, Acids, Bases
    • Properties of carbon
    • Macromolecules
    • Energy and Enzymes
    • Structure of a cell
    • Membranes and transport
    • Cellular respiration
    • Cell Signaling
    • Cell Division
    • Classical and molecular genetics
    • DNA as the genetic material
    • Central dogma
    • Gene regulation
  • Bioinformatics
    • Bioinformatics Overview
  • Deep Learning
    • Neural Networks and Deep Learning
      • Introduction
      • Logistic Regression as a Neural Network
      • Python and Vectorization
      • Shallow Neural Network
      • Deep Neural Network
    • Improving Deep Neural Networks
      • Setting up your Machine Learning Application
      • Regularizing your Neural Network
      • Setting up your Optimization Problem
      • Optimization algorithms
      • Hyperparameter, Batch Normalization, Softmax
    • Structuring Machine Learning Projects
    • Convolutional Neural Networks
      • Introduction
    • Sequence Models
      • Recurrent Neural Networks
      • Natural Language Processing & Word Embeddings
      • Sequence models & Attention mechanism
  • Linear Algebra
    • Vectors and Spaces
      • Vectors
      • Linear combinations and spans
      • Linear dependence and independence
      • Subspaces and the basis for a subspace
      • Vector dot and cross products
      • Matrices for solving systems by elimination
      • Null space and column space
    • Matrix transformations
      • Functions and linear transformations
      • Linear transformation examples
      • Transformations and matrix multiplication
      • Inverse functions and transformations
      • Finding inverses and determinants
      • More Determinant Depth
  • Machine Learning
    • Introduction
    • Linear Regression
      • Model and Cost Function
      • Parameter Learning
      • Multivariate Linear Regression
      • Computing Parameters Analytically
      • Octave
    • Logistic Regression
      • Classification and Representation
      • Logistic Regression Model
    • Regularization
      • Solving the Problem of Overfitting
    • Neural Networks
      • Introduction of Neural Networks
      • Neural Networks - Learning
    • Improve Learning Algorithm
      • Advice for Applying Machine Learning
      • Machine Learning System Design
    • Support Vector Machine
      • Large Margin Classification
      • Kernels
      • SVM in Practice
  • NCKU - Artificial Intelligence
    • Introduction
    • Intelligent Agents
    • Solving Problems by Searching
    • Beyond Classical Search
    • Learning from Examples
  • NCKU - Computer Architecture
    • First Week
  • NCKU - Data Mining
    • Introduction
    • Association Analysis
    • FP-growth
    • Other Association Rules
    • Sequence Pattern
    • Classification
    • Evaluation
    • Clustering
    • Link Analysis
  • NCKU - Machine Learning
    • Probability
    • Inference
    • Bayesian Inference
    • Introduction
  • NCKU - Robotic Navigation and Exploration
    • Kinetic Model & Vehicle Control
    • Motion Planning
    • SLAM Back-end (I)
    • SLAM Back-end (II)
    • Computer Vision / Multi-view Geometry
    • Lie group & Lie algebra
    • SLAM Front-end
  • Python
    • Numpy
    • Pandas
    • Scikit-learn
      • Introduction
      • Statistic Learning
  • Statstics
    • Quantitative Data
    • Modeling Data Distribution
    • Bivariate Numerical Data
    • Probability
    • Random Variables
    • Sampling Distribution
    • Confidence Intervals
    • Significance tests
Powered by GitBook
On this page
  • Practical aspects of Deep Learning
  • Optimization algorithms
  • Hyperparameter tuning, Batch Normalization and Programming Frameworks

Was this helpful?

  1. Deep Learning

Improving Deep Neural Networks

在 Improving deep neural networks 中

將學習到 deep learning 中的 "magic"

而不只是當成 black box 一樣使用他

知道如何控制 performance, 並且有系統性的取得 good results

  • 了解業界在 build dl application 的 best-practices

  • 能夠使用 common neural network tricks

    • initialization, L2, dropout regularization, batch normalization, gradient checking

  • 能夠應用各種優化演算法

    • mini-batch gradient descent, momentum, RMSprop, Adam, check convergence

  • 知道如何設定 new best-practices

    • train/dev/test sets

    • analyze bias/variance

  • 會用 TensorFlow

這將是 Deep Learning 的第二堂課 !

Practical aspects of Deep Learning

  • Setting up your Machine Learning Application

    • train / dev / test sets

    • bias / variance

  • Regularizing your neural network

    • regularization

    • dropout

    • L2

  • Setting up your optimization problem

    • normalizing inputs

    • vanishing / exploding gradients

    • weight initialization

    • gradient checking

Optimization algorithms

  • mini-batch gradient descent

  • exponentially weighted averages

  • bias correction

  • momentum

  • RMSprop

  • Adam

  • learning rate decay

Hyperparameter tuning, Batch Normalization and Programming Frameworks

  • Hyperparameter tuning

    • appropriate scale to pick hyperparameter

    • pandas, caviar practice

  • Batch normalization

    • normalize activations

    • fitting batch norm

  • Multi-class classification

    • softmax regression

    • softmax classifier

  • Introduction to programming frameworks

    • deep learning frameworks

    • tensorflow

PreviousDeep Neural NetworkNextSetting up your Machine Learning Application

Last updated 5 years ago

Was this helpful?