Sequence Models
在 Sequence models 中
將會學到如何建立 natural language, audio, 或其他 sequence data 的模型
因為有 deep learning,sequence algorithms 才能夠快速進步
進步的專案有
speech recognition
music synthesis
chatbots
machine translation
natural language understanding
and many others...
在這堂課還會學到
Recurrent Neural Networks (RNNs) 和常見的變形,如 GRUs 和 LSTMs
能夠將 sequence models 套用到 natural language problems,包含 text synthesis
能夠將 sequence models 套用到 audio applications,包含 speech recognition 和 music synthesis
這將是 deep learning 的第五堂課 !
另外本堂課 deeplearning.ai 還有和 NVIDIA 的 Deep Learning Institute 進行合作
所以在 assignment 中可以碰到實際的 machine translation
是能夠接近 cutting-edge 的 industry-relevant content 的機會
Recurrent Neural Networks
介紹什麼是 RNNs,RNNs 這類型的網路 (LSTM, GRU, BRNNs) 能夠有效處理 temporal data
Sequence models
RNNs model
Backpropogation through time
Language model and sequence generation
Sampling novel sequences
Vanishing gradients with RNNs
Gated Recurrent Unit (GRU)
Long Short Term Memory (LSTM)
Bidirectional RNN
Deep RNNs
Natural Language Processing & Word Embeddings
RNNs 和 NLP 能夠非常有效的搭配在一起
利用 word vector 和 embedding layers 來訓練 RNNs 能夠產生相當多的產業
例如 sentiment analysis, named entity recognition, machine translation
Word Representation
Word embeddings
Embedding matrix
Word2Vec
Negative Sampling
GloVe word vectors
Sentiment Classification
Debiasing word embeddings
Sequence models & Attention mechanism
我們可以利用 attention mechanism 來強化 sequence models
這個 algorithm 告訴 model 該 focus 在哪一段 sequence of inputs
Basic Models
Beam Search
Error analysis
Bleu Score
Attention Model
Speech recognition
Trigger Word Detection
Last updated