Academic
  • Introduction
  • Artificial Intelligence
    • Introduction
    • AI Concepts, Terminology, and Application Areas
    • AI: Issues, Concerns and Ethical Considerations
  • Biology
    • Scientific Method
    • Chemistry of Life
    • Water, Acids, Bases
    • Properties of carbon
    • Macromolecules
    • Energy and Enzymes
    • Structure of a cell
    • Membranes and transport
    • Cellular respiration
    • Cell Signaling
    • Cell Division
    • Classical and molecular genetics
    • DNA as the genetic material
    • Central dogma
    • Gene regulation
  • Bioinformatics
    • Bioinformatics Overview
  • Deep Learning
    • Neural Networks and Deep Learning
      • Introduction
      • Logistic Regression as a Neural Network
      • Python and Vectorization
      • Shallow Neural Network
      • Deep Neural Network
    • Improving Deep Neural Networks
      • Setting up your Machine Learning Application
      • Regularizing your Neural Network
      • Setting up your Optimization Problem
      • Optimization algorithms
      • Hyperparameter, Batch Normalization, Softmax
    • Structuring Machine Learning Projects
    • Convolutional Neural Networks
      • Introduction
    • Sequence Models
      • Recurrent Neural Networks
      • Natural Language Processing & Word Embeddings
      • Sequence models & Attention mechanism
  • Linear Algebra
    • Vectors and Spaces
      • Vectors
      • Linear combinations and spans
      • Linear dependence and independence
      • Subspaces and the basis for a subspace
      • Vector dot and cross products
      • Matrices for solving systems by elimination
      • Null space and column space
    • Matrix transformations
      • Functions and linear transformations
      • Linear transformation examples
      • Transformations and matrix multiplication
      • Inverse functions and transformations
      • Finding inverses and determinants
      • More Determinant Depth
  • Machine Learning
    • Introduction
    • Linear Regression
      • Model and Cost Function
      • Parameter Learning
      • Multivariate Linear Regression
      • Computing Parameters Analytically
      • Octave
    • Logistic Regression
      • Classification and Representation
      • Logistic Regression Model
    • Regularization
      • Solving the Problem of Overfitting
    • Neural Networks
      • Introduction of Neural Networks
      • Neural Networks - Learning
    • Improve Learning Algorithm
      • Advice for Applying Machine Learning
      • Machine Learning System Design
    • Support Vector Machine
      • Large Margin Classification
      • Kernels
      • SVM in Practice
  • NCKU - Artificial Intelligence
    • Introduction
    • Intelligent Agents
    • Solving Problems by Searching
    • Beyond Classical Search
    • Learning from Examples
  • NCKU - Computer Architecture
    • First Week
  • NCKU - Data Mining
    • Introduction
    • Association Analysis
    • FP-growth
    • Other Association Rules
    • Sequence Pattern
    • Classification
    • Evaluation
    • Clustering
    • Link Analysis
  • NCKU - Machine Learning
    • Probability
    • Inference
    • Bayesian Inference
    • Introduction
  • NCKU - Robotic Navigation and Exploration
    • Kinetic Model & Vehicle Control
    • Motion Planning
    • SLAM Back-end (I)
    • SLAM Back-end (II)
    • Computer Vision / Multi-view Geometry
    • Lie group & Lie algebra
    • SLAM Front-end
  • Python
    • Numpy
    • Pandas
    • Scikit-learn
      • Introduction
      • Statistic Learning
  • Statstics
    • Quantitative Data
    • Modeling Data Distribution
    • Bivariate Numerical Data
    • Probability
    • Random Variables
    • Sampling Distribution
    • Confidence Intervals
    • Significance tests
Powered by GitBook
On this page
  • What is Neural Network ?
  • Supervised Learning with NN
  • Data Type
  • Why is Deep Learning taking off ?

Was this helpful?

  1. Deep Learning
  2. Neural Networks and Deep Learning

Introduction

PreviousNeural Networks and Deep LearningNextLogistic Regression as a Neural Network

Last updated 5 years ago

Was this helpful?

What is Neural Network ?

我們可以用一個 linear regression 的例子來解釋 Neural network

假設我們要用房子大小來預設價格

這裡我們生出一個最簡單的 neural network

  • x 是我們的 input (house size)

  • 他會經過一個 neuron (activation function)

    • 這邊使用的為 ReLU function (Rectified Linear Unit)

    • ReLU function 的圖形跟上面的 house prediction 一模一樣

  • 最後我們吐出一個 ouput y (price)

Neural networks 可以像樂高一樣層層堆疊起來

像是一步一步把結果導向最佳解

每一個 hidden layer 的 neuron 我們都可以自行定義他的意思

例如 input 1, 2 所產生的第一個 neuron 代表的是 family size

他可以比 1, 2 更有效的來預判 price

所以給予 neural networks 足夠的 input 通常能產生不錯的 output

Supervised Learning with NN

目前非常成熟的 neural networks 通常都是 supervised learning

也就是給定 label x 與 y 來做訓練

以下是一些 neural networks 中熱門的 supervised learning

Input (x)

Output (y)

Application

Type

House features

Price

Real Estate

Standard NN

Ad, User info

Click ad ?

Advertising

Standard NN

Image

Object (0, ..., 1000)

Photo tagging

CNNs

Audio

Transcript

Speech Recognition

RNNs

English

Chinese

Machine Translation

RNNs

Image, Radar info

Position of other car

Autonomous Driving

Custom NN

Data Type

Structured Data

Size

Bedrooms

...

Price

2104

3

400

1600

3

330

2440

3

350

...

3000

4

500

Unstructured Data

  • Audio

  • Image

  • Raw Text

Neural networks 的進步能夠被大家看見

也有一些原因是因為 neural networks 開始能夠分析 unstructured data !

Why is Deep Learning taking off ?

"Scale" drives deep learning progress !

  • 傳統的 learning algorithm 在 data 越來越多時,並不能有顯著的提升

  • 一開始發現小型的 Neural networks 在 data 變多時,可以提升 performance

  • 接著發現中型、大型的 Neural networks 又能更加提升 performance

  • 直到今日,越大的 Neural networks 利用越多的 data 就可以有越好的 performance

  • 所以 scale 指的是 Both Neural networks 和 data 的大小

另外 deep learning 的進步也受益於

  • Data : 現在的生活中能夠數位化的東西非常多

  • Computation : GPU 等硬體的出現及升級

  • Algorithm : 不時的有更強大的演算法被發表出來,例如 ReLU