Convolutional Neural Networks
在 Convolutional Neural Networks 中
將會教導如何建立 CNN 然後應用在 image data 上
因為有了 CNN ,所以 computer vision 能夠快速進步
應用在各式各樣的專案中,如
safe autonomous driving
accurate face recognition
automatic reading of radiology images
在這個課堂上,將可以
了解如何建立 CNN,甚至是他的變形,如 residual networks
了解如何應用 CNN 在 visual detection 和 recognition tasks
了解如何使用 neural style transfer 來產生藝術作品
將 CNN 應用於更多 image, video, 2D, 3D data
這將是 Deep learning 的第四堂課 !
Foundations of Convolutional Neural Networks
了解 CNNs 裡的基本 layers 運作 (pooling, convolution)
並能夠堆疊他們來處理 multi-class image classification
Computer vision
Edge Detection
Strided Convolutions
Convolutions Over Volume
Simple Convolutional Network
Pooling Layers
Deep convolutional models: case studies
來看一些實際在 research papers 中的 CNNs 實作技術
Classic Networks
ResNets
Networks in Networks and 1x1 Convolutions
Inception Network
Transfer Learning
Data Augmentation
Object detection
利用學到的 CNNs 來實作 computer vision 最困難但最熱門的領域 : object detection
Object Localization
Landmark Detection
Object Detection
Convolutional Implementation of Sliding Windows
Bounding Box Predictions
Intersection Over Union
Non-max Suppressio
Anchor Boxes
YOLO Algorithm
Special applications: Face recognition & Neural style transfer
了解更多 CNNs 可以應用的範圍,例如 art generation, face recognition
我們將實際設計 algorithm 來做出以上兩件事 !
One Shot Learning
Siamese Network
Triplet Loss
Face Verification and Binary Classification
Neural style transfer
deep ConvNets learning
Content Cost Function
Style Cost Function
1D and 3D Generalizations
Last updated