Introduction
Mean
就是求平均值。
Variance
代表每個數值的分散程度,越大代表越分散
就是找到所有值跟 mean 的差的平方,然後全部合起來求平均。
linearly variance
Pearsons correlation =
Spearman's rank correlation
Standard Deviation
一樣是用來表達數值間的分散程度
但更好的表達每個數值跟 mean 的平均距離有多遠
只是把 variance 開根號就好了
Expectation
期望值其實只是每個數值乘上出現的機率,得出來的總和而已
期望值又可以表達成
例如一個骰子的機率是
X | prob(X) |
1 | 1/6 |
2 | 1/6 |
3 | 1/6 |
4 | 1/6 |
5 | 1/6 |
6 | 1/6 |
所以期望值為
linearly expectation
expectation (p1)
Normal Distribution
指的是現實中常見的常態分布
又稱作高斯分布 (Gaussian distribution)
是一個 bell 的形狀
mean = median,且都在 distribution 的中央
有大約 68% 的數值在 1 standard deviation of the mean
有大約 95% 的數值在 2 standard deviation of the mean
有大約 99.7% 的數值在 3 standard deviation of the mean
上面三個數值的分布又稱為 Empirical rule
The probability density of the normal distribution is
Standard Normal Distribution
標準常態分布是 Normal distribution 的一種
他的平均在 0,且 variance = 1
The probability density of the standard normal distribution is
Entropy
entropy (p32) https://planetcalc.com/2476/
entropy can be used to predict the least bits needs to be transfer a = 1/2, b = 1/2, h = 1 a = 2/3, b = 1/3, h = .92 => can use less than 1 bit to code (use huffman code)
Probability
Likelihood
https://www.statisticshowto.datasciencecentral.com/likelihood-function/
Prior Probability
prior odds P(A) = 20% P(-A) = 80% =1/4
Posterior Probability
https://www.statisticshowto.datasciencecentral.com/posterior-distribution-probability/
posterior odds
posterior = prior odds * likelihood
is better than bayes law (P[S] is not easy to get.)
Bayes law
https://www.khanacademy.org/math/ap-statistics/probability-ap#stats-conditional-probability
odds form of bayes law (p29)
Odds ratio
https://www.statisticshowto.datasciencecentral.com/odds-ratio/
Bent coin
beta integral with gamma function
3.5 answer
Course goal: Full understanding of inferrence of Pa
binomial distribution inferrence
chapter 3
Binomial Distribution
Maximum Likelihood
gaussian mixture model
Bayesian inference
https://en.wikipedia.org/wiki/Bayesian_inference
Belief update
https://en.wikipedia.org/wiki/Belief_revision
Maximum Likelihood Estimation
https://bookdown.org/ccwang/medical_statistics6/likelihood-definition.html
Random Variables
if x, y independent
if X determines Y
hw : p-val = prob of data given hypothesis
P-value
Clustering
k nearest neighbors
=> K-NN NEAREST NEIGHBORS https://zh.wikipedia.org/wiki/%E6%9C%80%E8%BF%91%E9%84%B0%E5%B1%85%E6%B3%95
k-means clustering
=> K-MEANS CLUSTERING https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-%E9%9B%86%E7%BE%A4%E5%88%86%E6%9E%90-k-means-clustering-e608a7fe1b43
soft k-mean clustering
p289
Curse of demensionality
Demension Reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction#Feature_selection feature selection, PCA, assume features are independent
Beta Binomial Reasoning
Conjugate
這個的微分為 beta integral
當 a = 1, b = 1 時為 uniform prior
beta distribution 不夠表達
可以加上 mixture model
murphy p43
Naive Bayes
Last updated