Introduction
Last updated
Was this helpful?
Last updated
Was this helpful?
就是求。
代表每個數值的分散程度,越大代表越分散
就是找到。
linearly variance
Spearman's rank correlation
一樣是用來表達數值間的分散程度
但更好的表達每個數值跟 mean 的平均距離有多遠
只是把 variance 開根號就好了
例如一個骰子的機率是
X
prob(X)
1
1/6
2
1/6
3
1/6
4
1/6
5
1/6
6
1/6
所以期望值為
linearly expectation
expectation (p1)
又稱作高斯分布 (Gaussian distribution)
是一個 bell 的形狀
mean = median,且都在 distribution 的中央
有大約 68% 的數值在 1 standard deviation of the mean
有大約 95% 的數值在 2 standard deviation of the mean
有大約 99.7% 的數值在 3 standard deviation of the mean
上面三個數值的分布又稱為 Empirical rule
The probability density of the normal distribution is
標準常態分布是 Normal distribution 的一種
他的平均在 0,且 variance = 1
The probability density of the standard normal distribution is
entropy can be used to predict the least bits needs to be transfer a = 1/2, b = 1/2, h = 1 a = 2/3, b = 1/3, h = .92 => can use less than 1 bit to code (use huffman code)
prior odds P(A) = 20% P(-A) = 80% =1/4
posterior odds
posterior = prior odds * likelihood
is better than bayes law (P[S] is not easy to get.)
odds form of bayes law (p29)
beta integral with gamma function
Course goal: Full understanding of inferrence of Pa
binomial distribution inferrence
chapter 3
if x, y independent
if X determines Y
hw : p-val = prob of data given hypothesis
p289
Conjugate
這個的微分為 beta integral
當 a = 1, b = 1 時為 uniform prior
beta distribution 不夠表達
可以加上 mixture model
murphy p43
Pearsons correlation =
期望值其實只是
期望值又可以表達成
指的是現實中常見的
entropy (p32)
=> K-NN NEAREST NEIGHBORS
=> K-MEANS CLUSTERING
feature selection, PCA, assume features are independent