Academic
  • Introduction
  • Artificial Intelligence
    • Introduction
    • AI Concepts, Terminology, and Application Areas
    • AI: Issues, Concerns and Ethical Considerations
  • Biology
    • Scientific Method
    • Chemistry of Life
    • Water, Acids, Bases
    • Properties of carbon
    • Macromolecules
    • Energy and Enzymes
    • Structure of a cell
    • Membranes and transport
    • Cellular respiration
    • Cell Signaling
    • Cell Division
    • Classical and molecular genetics
    • DNA as the genetic material
    • Central dogma
    • Gene regulation
  • Bioinformatics
    • Bioinformatics Overview
  • Deep Learning
    • Neural Networks and Deep Learning
      • Introduction
      • Logistic Regression as a Neural Network
      • Python and Vectorization
      • Shallow Neural Network
      • Deep Neural Network
    • Improving Deep Neural Networks
      • Setting up your Machine Learning Application
      • Regularizing your Neural Network
      • Setting up your Optimization Problem
      • Optimization algorithms
      • Hyperparameter, Batch Normalization, Softmax
    • Structuring Machine Learning Projects
    • Convolutional Neural Networks
      • Introduction
    • Sequence Models
      • Recurrent Neural Networks
      • Natural Language Processing & Word Embeddings
      • Sequence models & Attention mechanism
  • Linear Algebra
    • Vectors and Spaces
      • Vectors
      • Linear combinations and spans
      • Linear dependence and independence
      • Subspaces and the basis for a subspace
      • Vector dot and cross products
      • Matrices for solving systems by elimination
      • Null space and column space
    • Matrix transformations
      • Functions and linear transformations
      • Linear transformation examples
      • Transformations and matrix multiplication
      • Inverse functions and transformations
      • Finding inverses and determinants
      • More Determinant Depth
  • Machine Learning
    • Introduction
    • Linear Regression
      • Model and Cost Function
      • Parameter Learning
      • Multivariate Linear Regression
      • Computing Parameters Analytically
      • Octave
    • Logistic Regression
      • Classification and Representation
      • Logistic Regression Model
    • Regularization
      • Solving the Problem of Overfitting
    • Neural Networks
      • Introduction of Neural Networks
      • Neural Networks - Learning
    • Improve Learning Algorithm
      • Advice for Applying Machine Learning
      • Machine Learning System Design
    • Support Vector Machine
      • Large Margin Classification
      • Kernels
      • SVM in Practice
  • NCKU - Artificial Intelligence
    • Introduction
    • Intelligent Agents
    • Solving Problems by Searching
    • Beyond Classical Search
    • Learning from Examples
  • NCKU - Computer Architecture
    • First Week
  • NCKU - Data Mining
    • Introduction
    • Association Analysis
    • FP-growth
    • Other Association Rules
    • Sequence Pattern
    • Classification
    • Evaluation
    • Clustering
    • Link Analysis
  • NCKU - Machine Learning
    • Probability
    • Inference
    • Bayesian Inference
    • Introduction
  • NCKU - Robotic Navigation and Exploration
    • Kinetic Model & Vehicle Control
    • Motion Planning
    • SLAM Back-end (I)
    • SLAM Back-end (II)
    • Computer Vision / Multi-view Geometry
    • Lie group & Lie algebra
    • SLAM Front-end
  • Python
    • Numpy
    • Pandas
    • Scikit-learn
      • Introduction
      • Statistic Learning
  • Statstics
    • Quantitative Data
    • Modeling Data Distribution
    • Bivariate Numerical Data
    • Probability
    • Random Variables
    • Sampling Distribution
    • Confidence Intervals
    • Significance tests
Powered by GitBook
On this page

Was this helpful?

  1. Linear Algebra
  2. Vectors and Spaces

Vectors

PreviousVectors and SpacesNextLinear combinations and spans

Last updated 5 years ago

Was this helpful?

賦予任意坐標方向性,並且可以從任意起點開始

  • Scalar multiplication

    • 視覺上就像一個向量,被直直的拉長 10 倍

v⃗=(2,3)10v⃗=(20,30)\vec{v} = (2,3) \\10\vec{v} = (20, 30)v=(2,3)10v=(20,30)
  • Unit vector

    • A unit vector has a magnitude (or length) of 1.

v⃗=(2,3)unit vector of v⃗=(213, 313)check: (213)2+(313)2=1\begin{aligned} &\vec{v} = \left(2,3\right) \\ &\text{unit vector of } \vec{v} = \left(\frac{2}{\sqrt{13}},\:\frac{3}{\sqrt{13}}\right)\\ \\ &\text{check: }\sqrt{\left(\frac{2}{\sqrt{13}}\right)^2+\left(\frac{3}{\sqrt{13}}\right)^2} = 1 \end{aligned}​v=(2,3)unit vector of v=(13​2​,13​3​)check: (13​2​)2+(13​3​)2​=1​
  • Add & subtract vectors

    • 視覺上就像先往第一個向量前進後,再往第二個向量的 (正或反) 向前進

u⃗=(−5,3)w⃗=(−12,−4)w⃗−u⃗=(−7,−7)\begin{aligned} \vec{u} &= (-5, 3)\\ \vec{w} &= (-12, -4)\\ \vec{w} - \vec{u} &= (-7, -7) \end{aligned}uww−u​=(−5,3)=(−12,−4)=(−7,−7)​