Academic
  • Introduction
  • Artificial Intelligence
    • Introduction
    • AI Concepts, Terminology, and Application Areas
    • AI: Issues, Concerns and Ethical Considerations
  • Biology
    • Scientific Method
    • Chemistry of Life
    • Water, Acids, Bases
    • Properties of carbon
    • Macromolecules
    • Energy and Enzymes
    • Structure of a cell
    • Membranes and transport
    • Cellular respiration
    • Cell Signaling
    • Cell Division
    • Classical and molecular genetics
    • DNA as the genetic material
    • Central dogma
    • Gene regulation
  • Bioinformatics
    • Bioinformatics Overview
  • Deep Learning
    • Neural Networks and Deep Learning
      • Introduction
      • Logistic Regression as a Neural Network
      • Python and Vectorization
      • Shallow Neural Network
      • Deep Neural Network
    • Improving Deep Neural Networks
      • Setting up your Machine Learning Application
      • Regularizing your Neural Network
      • Setting up your Optimization Problem
      • Optimization algorithms
      • Hyperparameter, Batch Normalization, Softmax
    • Structuring Machine Learning Projects
    • Convolutional Neural Networks
      • Introduction
    • Sequence Models
      • Recurrent Neural Networks
      • Natural Language Processing & Word Embeddings
      • Sequence models & Attention mechanism
  • Linear Algebra
    • Vectors and Spaces
      • Vectors
      • Linear combinations and spans
      • Linear dependence and independence
      • Subspaces and the basis for a subspace
      • Vector dot and cross products
      • Matrices for solving systems by elimination
      • Null space and column space
    • Matrix transformations
      • Functions and linear transformations
      • Linear transformation examples
      • Transformations and matrix multiplication
      • Inverse functions and transformations
      • Finding inverses and determinants
      • More Determinant Depth
  • Machine Learning
    • Introduction
    • Linear Regression
      • Model and Cost Function
      • Parameter Learning
      • Multivariate Linear Regression
      • Computing Parameters Analytically
      • Octave
    • Logistic Regression
      • Classification and Representation
      • Logistic Regression Model
    • Regularization
      • Solving the Problem of Overfitting
    • Neural Networks
      • Introduction of Neural Networks
      • Neural Networks - Learning
    • Improve Learning Algorithm
      • Advice for Applying Machine Learning
      • Machine Learning System Design
    • Support Vector Machine
      • Large Margin Classification
      • Kernels
      • SVM in Practice
  • NCKU - Artificial Intelligence
    • Introduction
    • Intelligent Agents
    • Solving Problems by Searching
    • Beyond Classical Search
    • Learning from Examples
  • NCKU - Computer Architecture
    • First Week
  • NCKU - Data Mining
    • Introduction
    • Association Analysis
    • FP-growth
    • Other Association Rules
    • Sequence Pattern
    • Classification
    • Evaluation
    • Clustering
    • Link Analysis
  • NCKU - Machine Learning
    • Probability
    • Inference
    • Bayesian Inference
    • Introduction
  • NCKU - Robotic Navigation and Exploration
    • Kinetic Model & Vehicle Control
    • Motion Planning
    • SLAM Back-end (I)
    • SLAM Back-end (II)
    • Computer Vision / Multi-view Geometry
    • Lie group & Lie algebra
    • SLAM Front-end
  • Python
    • Numpy
    • Pandas
    • Scikit-learn
      • Introduction
      • Statistic Learning
  • Statstics
    • Quantitative Data
    • Modeling Data Distribution
    • Bivariate Numerical Data
    • Probability
    • Random Variables
    • Sampling Distribution
    • Confidence Intervals
    • Significance tests
Powered by GitBook
On this page
  • What is AI ?
  • Acting Humanly : The Turing Test
  • Thinking Humanly : Cognitive Modeling
  • Thinking Rationally : Law of Thought
  • Acting Rationally : Rational Agent
  • Foundations of AI
  • History of AI
  • The gestation of artificial intelligence (1943–1955)
  • The birth of artificial intelligence (1956)
  • Early enthusiasm, great expectations (1952–1969)
  • A dose of reality (1966–1973)
  • Knowledge-based systems: The key to power? (1969–1979)
  • AI becomes an industry (1980–present)
  • The return of neural networks (1986–present)
  • AI adopts the scientific method (1987–present)
  • The emergence of intelligent agents (1995–present)
  • The availability of very large data sets (2001–present)
  • The State of the Art

Was this helpful?

  1. NCKU - Artificial Intelligence

Introduction

PreviousNCKU - Artificial IntelligenceNextIntelligent Agents

Last updated 5 years ago

Was this helpful?

What is AI ?

AI 從二戰後急速成長,而在 被正式確立

一些定義將 AI 分為四大類型 :

  • Thinking Humanly

  • Thinking Rationally

  • Acting Humanly

  • Acting Rationally

Acting Humanly : The Turing Test

當一個 Computer 在進行 Turing test

並且詢問者在詢問完一些問題後

不知道他詢問的對象是 Computer 還是 Human

AI 就達成了 Acting Humanly

這個電腦需具備 :

  • Natural language processing

  • Knowledge representation

  • Automated reasoning

  • Machine learning

  • Computer vision

  • Robotics

The study of how to make computers do things at which, at the moment, people are better. (Rich and Knight, 1991)

Thinking Humanly : Cognitive Modeling

當電腦具備一些類似人類的思考模式時

  • Through introspection (反思)

  • Through psychological experiments

  • Through brain imaging

Cognitive Science 結合了 AI 和 Psychology,嘗試建立起精準又可以測試的人腦理論。

The art of creating machines that perform functions that require intelligence when performed by people (Kurzweil, 1990)

Thinking Rationally : Law of Thought

當 AI 能夠自己解決任何 logical solvable problem (Logicist tradition) 時

有兩大障礙 :

  • Logical notation 沒辦法輕鬆表達 informal knowledge

  • 解決問題 in principle 和解決問題 in practice 有非常大的差別

    • 簡單的問題都有可能有幾百種 facts 可以讓電腦資源癱瘓

The study of the computations that make it possible to perceive, reason, and act. (Winston, 1992)

Acting Rationally : Rational Agent

當沒有預設的最佳解時,AI 依然可以給出最佳解

有兩大優點 :

  • More general than "Laws of thought"

    • 因為找到最佳解只是在數種答案中找到其中一種

  • More amenable (經得起檢驗)

AI ...is concerned with intelligent behavior in artifacts. (Nilsson, 1998)

Foundations of AI

  • Philosophy

    • 智慧從哪兒來、智慧怎麼變成動作

  • Mathematics

    • 什麼可以被計算、如何從不確定的資訊來推論

  • Economics

    • 怎麼做可以得到最大效益

  • Neuroscience

    • 大腦怎麼處理資料

  • Psychology

    • 人類跟動物是怎麼思考跟動作的

  • Computer engineering

    • 怎麼樣建立一個有效率的 computer

  • Control theory and cybernetics

    • 如何控制人工智慧

  • Linguistics

    • 語言跟思考的關係在哪裡

History of AI

The gestation of artificial intelligence (1943–1955)

  • McCulloch and Walter Pitts (1943) 推出一種 artificial neuron 可以計算一些 function & logic

  • Donald Hebb (1949) 升級並改造了兩個 neurons 的連結

  • Marvin Minsky and Dean Edmonds (1950) 建立第一個 neural network

  • Alan Turing 在 1947 年就有類似課程

The birth of artificial intelligence (1956)

    • John McCarthy, Marvin Minsky, Claude Shannon, Nathaniel Rochester ...

Early enthusiasm, great expectations (1952–1969)

  • Newell and Simon (1952-1969) 發明 General Problem Solver (GPS)

    • 可能是第一個 "thinking humanly" approach.

  • Nathaniel Rochester (1952-1969) 在 IBM 建立一些 AI 專案

  • Herbert Gelernter (1959) 建立 Geometry Theorem Prover 可以證明一些理論

  • Arthur Samuel (1952-) 寫出 checkers

  • McCarthy (1958) 定義 high-level language Lisp,在之後三十年主導 AI 領域

    • Advice Taker (hypothetical program)

  • Minsky with microworlds

  • McCulloch and Pitts with neural networks

A dose of reality (1966–1973)

  • AI researchers’ overconfidence

  • 在 machine translation efforts 上心有餘而力不足

  • Scalability: 找到 principle 的 solution 不代表找到方法可以實作

  • fundamental limitations on the basic structures

Knowledge-based systems: The key to power? (1969–1979)

  • 之前的方法都是 Weak methods

  • 要突破 weak methods 必須要有更多專業知識進到 AI 領域

  • DENDRAL program (Buchanan et al., 1969) 可以解決 inferring molecular structure

  • Feigenbaum and others at Stanford developed MYCIN to diagnose blood infections

  • domain knowledge 的重視也在 natural language 這塊出現

AI becomes an industry (1980–present)

  • expert systems, vision systems, robots, and software and hardware specialized for these purposes

  • AI Winter

The return of neural networks (1986–present)

  • mid-1980s 一些科學家重新設計 Bryson and Ho (1969) 的 back-propagation learning algorithm

  • 造就新的 connectionist models 出現,他們被視為是 symbolic models & logicist approach 的兢爭對手

AI adopts the scientific method (1987–present)

  • AI 理論大致上不會再被改變,並且開始出現一些 real-world applications

  • Speech recognition

  • Machine translation

  • Data mining

  • Probabilistic reasoning

The emergence of intelligent agents (1995–present)

  • Whole agent problem 重新出現

  • search engines, recommender systems, and website aggregators

  • AI 與更多領域結合在一起

The availability of very large data sets (2001–present)

  • 以前的 computer science 重視 algorithm

  • 而新的說法認為 data 更為重要一些

  • 要表達各種 Knowledge 的方法比起 hand-coded,使用 learning methods on big data 可能更加有效

The State of the Art

  • Robotic vehicles

  • Speech recognition

  • Autonomous planning and scheduling

  • Game playing

  • Spam fighting

  • Logistics planning

  • Robotics

  • Machine translation

  • …

Newell and Simon (1976) 定義

1956 年
Dartmouth conference
physical symbol system hypothesis