Introduction

What is AI ?

AI 從二戰後急速成長,而在 1956 年 被正式確立

一些定義將 AI 分為四大類型 :

  • Thinking Humanly

  • Thinking Rationally

  • Acting Humanly

  • Acting Rationally

Acting Humanly : The Turing Test

當一個 Computer 在進行 Turing test

並且詢問者在詢問完一些問題後

不知道他詢問的對象是 Computer 還是 Human

AI 就達成了 Acting Humanly

這個電腦需具備 :

  • Natural language processing

  • Knowledge representation

  • Automated reasoning

  • Machine learning

  • Computer vision

  • Robotics

The study of how to make computers do things at which, at the moment, people are better. (Rich and Knight, 1991)

Thinking Humanly : Cognitive Modeling

當電腦具備一些類似人類的思考模式時

  • Through introspection (反思)

  • Through psychological experiments

  • Through brain imaging

Cognitive Science 結合了 AI 和 Psychology,嘗試建立起精準又可以測試的人腦理論。

The art of creating machines that perform functions that require intelligence when performed by people (Kurzweil, 1990)

Thinking Rationally : Law of Thought

當 AI 能夠自己解決任何 logical solvable problem (Logicist tradition) 時

有兩大障礙 :

  • Logical notation 沒辦法輕鬆表達 informal knowledge

  • 解決問題 in principle 和解決問題 in practice 有非常大的差別

    • 簡單的問題都有可能有幾百種 facts 可以讓電腦資源癱瘓

The study of the computations that make it possible to perceive, reason, and act. (Winston, 1992)

Acting Rationally : Rational Agent

當沒有預設的最佳解時,AI 依然可以給出最佳解

有兩大優點 :

  • More general than "Laws of thought"

    • 因為找到最佳解只是在數種答案中找到其中一種

  • More amenable (經得起檢驗)

AI ...is concerned with intelligent behavior in artifacts. (Nilsson, 1998)

Foundations of AI

  • Philosophy

    • 智慧從哪兒來、智慧怎麼變成動作

  • Mathematics

    • 什麼可以被計算、如何從不確定的資訊來推論

  • Economics

    • 怎麼做可以得到最大效益

  • Neuroscience

    • 大腦怎麼處理資料

  • Psychology

    • 人類跟動物是怎麼思考跟動作的

  • Computer engineering

    • 怎麼樣建立一個有效率的 computer

  • Control theory and cybernetics

    • 如何控制人工智慧

  • Linguistics

    • 語言跟思考的關係在哪裡

History of AI

The gestation of artificial intelligence (1943–1955)

  • McCulloch and Walter Pitts (1943) 推出一種 artificial neuron 可以計算一些 function & logic

  • Donald Hebb (1949) 升級並改造了兩個 neurons 的連結

  • Marvin Minsky and Dean Edmonds (1950) 建立第一個 neural network

  • Alan Turing 在 1947 年就有類似課程

The birth of artificial intelligence (1956)

Early enthusiasm, great expectations (1952–1969)

  • Newell and Simon (1952-1969) 發明 General Problem Solver (GPS)

    • 可能是第一個 "thinking humanly" approach.

  • Newell and Simon (1976) 定義 physical symbol system hypothesis

  • Nathaniel Rochester (1952-1969) 在 IBM 建立一些 AI 專案

  • Herbert Gelernter (1959) 建立 Geometry Theorem Prover 可以證明一些理論

  • Arthur Samuel (1952-) 寫出 checkers

  • McCarthy (1958) 定義 high-level language Lisp,在之後三十年主導 AI 領域

    • Advice Taker (hypothetical program)

  • Minsky with microworlds

  • McCulloch and Pitts with neural networks

A dose of reality (1966–1973)

  • AI researchers’ overconfidence

  • 在 machine translation efforts 上心有餘而力不足

  • Scalability: 找到 principle 的 solution 不代表找到方法可以實作

  • fundamental limitations on the basic structures

Knowledge-based systems: The key to power? (1969–1979)

  • 之前的方法都是 Weak methods

  • 要突破 weak methods 必須要有更多專業知識進到 AI 領域

  • DENDRAL program (Buchanan et al., 1969) 可以解決 inferring molecular structure

  • Feigenbaum and others at Stanford developed MYCIN to diagnose blood infections

  • domain knowledge 的重視也在 natural language 這塊出現

AI becomes an industry (1980–present)

  • expert systems, vision systems, robots, and software and hardware specialized for these purposes

  • AI Winter

The return of neural networks (1986–present)

  • mid-1980s 一些科學家重新設計 Bryson and Ho (1969) 的 back-propagation learning algorithm

  • 造就新的 connectionist models 出現,他們被視為是 symbolic models & logicist approach 的兢爭對手

AI adopts the scientific method (1987–present)

  • AI 理論大致上不會再被改變,並且開始出現一些 real-world applications

  • Speech recognition

  • Machine translation

  • Data mining

  • Probabilistic reasoning

The emergence of intelligent agents (1995–present)

  • Whole agent problem 重新出現

  • search engines, recommender systems, and website aggregators

  • AI 與更多領域結合在一起

The availability of very large data sets (2001–present)

  • 以前的 computer science 重視 algorithm

  • 而新的說法認為 data 更為重要一些

  • 要表達各種 Knowledge 的方法比起 hand-coded,使用 learning methods on big data 可能更加有效

The State of the Art

  • Robotic vehicles

  • Speech recognition

  • Autonomous planning and scheduling

  • Game playing

  • Spam fighting

  • Logistics planning

  • Robotics

  • Machine translation

Last updated