Academic
  • Introduction
  • Artificial Intelligence
    • Introduction
    • AI Concepts, Terminology, and Application Areas
    • AI: Issues, Concerns and Ethical Considerations
  • Biology
    • Scientific Method
    • Chemistry of Life
    • Water, Acids, Bases
    • Properties of carbon
    • Macromolecules
    • Energy and Enzymes
    • Structure of a cell
    • Membranes and transport
    • Cellular respiration
    • Cell Signaling
    • Cell Division
    • Classical and molecular genetics
    • DNA as the genetic material
    • Central dogma
    • Gene regulation
  • Bioinformatics
    • Bioinformatics Overview
  • Deep Learning
    • Neural Networks and Deep Learning
      • Introduction
      • Logistic Regression as a Neural Network
      • Python and Vectorization
      • Shallow Neural Network
      • Deep Neural Network
    • Improving Deep Neural Networks
      • Setting up your Machine Learning Application
      • Regularizing your Neural Network
      • Setting up your Optimization Problem
      • Optimization algorithms
      • Hyperparameter, Batch Normalization, Softmax
    • Structuring Machine Learning Projects
    • Convolutional Neural Networks
      • Introduction
    • Sequence Models
      • Recurrent Neural Networks
      • Natural Language Processing & Word Embeddings
      • Sequence models & Attention mechanism
  • Linear Algebra
    • Vectors and Spaces
      • Vectors
      • Linear combinations and spans
      • Linear dependence and independence
      • Subspaces and the basis for a subspace
      • Vector dot and cross products
      • Matrices for solving systems by elimination
      • Null space and column space
    • Matrix transformations
      • Functions and linear transformations
      • Linear transformation examples
      • Transformations and matrix multiplication
      • Inverse functions and transformations
      • Finding inverses and determinants
      • More Determinant Depth
  • Machine Learning
    • Introduction
    • Linear Regression
      • Model and Cost Function
      • Parameter Learning
      • Multivariate Linear Regression
      • Computing Parameters Analytically
      • Octave
    • Logistic Regression
      • Classification and Representation
      • Logistic Regression Model
    • Regularization
      • Solving the Problem of Overfitting
    • Neural Networks
      • Introduction of Neural Networks
      • Neural Networks - Learning
    • Improve Learning Algorithm
      • Advice for Applying Machine Learning
      • Machine Learning System Design
    • Support Vector Machine
      • Large Margin Classification
      • Kernels
      • SVM in Practice
  • NCKU - Artificial Intelligence
    • Introduction
    • Intelligent Agents
    • Solving Problems by Searching
    • Beyond Classical Search
    • Learning from Examples
  • NCKU - Computer Architecture
    • First Week
  • NCKU - Data Mining
    • Introduction
    • Association Analysis
    • FP-growth
    • Other Association Rules
    • Sequence Pattern
    • Classification
    • Evaluation
    • Clustering
    • Link Analysis
  • NCKU - Machine Learning
    • Probability
    • Inference
    • Bayesian Inference
    • Introduction
  • NCKU - Robotic Navigation and Exploration
    • Kinetic Model & Vehicle Control
    • Motion Planning
    • SLAM Back-end (I)
    • SLAM Back-end (II)
    • Computer Vision / Multi-view Geometry
    • Lie group & Lie algebra
    • SLAM Front-end
  • Python
    • Numpy
    • Pandas
    • Scikit-learn
      • Introduction
      • Statistic Learning
  • Statstics
    • Quantitative Data
    • Modeling Data Distribution
    • Bivariate Numerical Data
    • Probability
    • Random Variables
    • Sampling Distribution
    • Confidence Intervals
    • Significance tests
Powered by GitBook
On this page
  • Intro to cell signaling
  • Forms of signaling
  • Communication in single-celled organisms
  • Quorum sensing in bacteria
  • Signaling in yeasts

Was this helpful?

  1. Biology

Cell Signaling

PreviousCellular respirationNextCell Division

Last updated 5 years ago

Was this helpful?

Intro to cell signaling

細胞能感知周圍變化,根據鄰居的通報來即時應變。 現在,你的細胞正透過 chemical signaling molecules 進行上百萬個訊息傳遞 !

  • 細胞之間透過 chemical signals 來交流

    • Signals 通常為 sending cell 所產生的 proteins 或其他 molecules

    • 從 cell 中被排出到 extracellular space

    • 像瓶中信一樣漂流在細胞之間

  • 擁有對應的 receptor 的 target cell 才能接收訊息

    • 他們要接收的那些 signals 可以稱做 ligands

    • 當 receptor 接收到 ligands

      • 就會改變 receptor 的形狀,試圖改變細胞內部的活動

Ligands 的訊息會在細胞內被"接力"傳遞

  • 由一連串的 chemical messengers 來接龍傳達

    • 最終改變細胞活動

      • 例如改變 gene 的活動

      • 例如引導整個 process (e.g., cell division)

  • 在細胞間傳遞的 signal 稱為 intercellular signal

  • 在細胞中傳遞的 signal 稱為 intracellular signal

The signal transduction pathway is made up of the following steps: 1. A ligand binds to a cell-surface receptor, which initiates a response on the inside of the cell by activating an initial protein. 2. The protein goes on to activate other proteins or second messenger molecules such as Ca2+\text{Ca}^{2+}Ca2+ or cAMP. 3. The final target is reached, causing the intended response.

Forms of signaling

細胞之間的距離不一,傳遞方式也不相同,在 multicellular organisms 有四種基本的 chemical signaling

  • Paracrine signaling

  • Autocrine signaling

  • Endocrine signaling

  • Direct contact

Paracrine signaling

  • Paracrine signaling 是最近的傳遞方法

    • Chemical messengers (ligands) 很短距離就可到達目標細胞

    • 通常跟鄰居進行 locally coordinate activities

    • 在 development 時特別重要

Synaptic signaling

Nerve cells 之間的 paracrine signaling 又稱為 synaptic signaling

  • Sending neuron 發射一個 electrical impulse 快速移動在 axon 中 (long, fiber-like)

    • 當 impulse 接觸到 synapse 就會釋放 neurotransmitters (ligands)

    • Neurotransmitters 會快速通過 nerve cells 之間的 gap

    • 來到 receiving cell 和 receptors 結合,改變細胞活動

Neurotransmitters 會被快速收回,讓 synapse 能夠快速準備下一次的 signaling

Autocrine signaling

  • 將 ligands 傳遞到自己身上的 receptors

    • 看起來沒用,但其實扮演很重要的工作 (e.g., development)

    • 幫助細胞在初期加深自己正確的身份

    • 在醫學上,幫助 cancer 執行 metastasis (癌細胞轉移)

多數環境下,signal 可以同時擁有 autocrine 和 paracrine 的效用,幫助 sending cell 和區域的 cells 交流

Endocrine signaling

  • 當細胞需要將訊息傳遞到很遠方時,需要使用 circulatory system (distribution network like)

    • Signals 被特定細胞產生,釋放到 bloodstream 中

    • 透過 bloodstream 運送到身體不同的地方

    • 這些 signals 稱為 hormones

人體常見的 endocrine glands 很多,都負責非常重要的工作,釋放一到多種重要的 hormones

  • Thyroid (甲狀腺)

  • Hypothalamus (下視丘)

  • Pituitary (腦垂腺)

  • Gonads (生殖腺)

    • Testicle (睪丸) and ovary (卵巢)

  • Pancreas (胰臟、胰腺)

例如 Pituitary 釋放 growth hormone (GH),負責生物生長,特別是在 skeleton 和 cartilage 部分

Signaling through cell-cell contact

  • Cell-cell 之間也能透過 gap junctions (animal) 和 plasmodesmata (plants) 來直接傳遞訊息

    • 在這兩種充滿水的 channel 移動的 signaling molecules 稱為 intracellular mediators

    • 一些小的例如 calcium ions (Ca2+\text{Ca}^{2+}Ca2+) 可以通過

    • 但大的例如 proteins, DNA 如果沒有特別幫助,就不行直接通過

  • 細胞可以透過此類型交流連成一個網路

    • 或許只有其中一個細胞收到指令

    • 但卻可以分享給周邊所有細胞

    • 在植物中 plasmodesmata 就幾乎充斥所有細胞之間,形成巨大網路

另外還有一種 direct signaling 的方式,如下圖

  • 兩個細胞有 complementary proteins 在細胞表面的時候

    • 接收到的一方會改變形狀 (有時兩者一起改變)

    • 這類傳遞 signal 方法多發生於 immune system

    • 例如上圖是 immune cell 利用自己的表面 markers 來確認其他細胞是敵是友

Communication in single-celled organisms

人體間的細胞可以互相溝通,那單細胞生物呢 ?

  • 要的,例如 yeast 和 bacteria 都還是要和同族群的生物"對話"

    • 例如 bacteria 透過 chemical signal 確認周遭同一族群的數量

    • Yeast 則是用 chemical signals 來尋找伴侶

Quorum sensing in bacteria

  • 原本大家都認為 bacteria 是單獨行動

    • 但其實 bacteria 是一個 community

    • 彼此之間透過 quorum sensing 的 cell-cell signaling 模式來交流

      • Bacteria 透過 quorum sensing 來監測 bacteria population 的密度

      • 當超過一個 threshold level,該區域的 bacteria 就會同時改變行為或是 gene expression

Signaling in yeasts

  • Yeast 是一種 fungus (single-celled eukaryotes)

    • 其中某個重要的 signaling pathway 是 mating factor pathway

    • Budding yeast 也能互相進行像人類一樣的 sexual reproduction

      • 2 個 haploid cells (single set of chromosomes, like sperm and eggs)

      • 融合成 1 個 diploid cell (two sets of chromosomes, like human body cell)

      • Diploid cell 又可以透過 meiosis 產生多個組合 genetic material 的 haploid cells

為了尋找能夠配對的 haploid yeast cell, budding yeast 就會用到 mating factor 這個 signal